ÀÛ¼ºÀÏ : 15-08-02 11:19
¹®Á¦ Áú¹®
 ±Û¾´ÀÌ : ¹éµµ¿ø(do1006)
Á¶È¸ : 8,087  
   http://usaco.org/index.php?page=feb15results [5834]

USACO 2015 February Contest, Silver

Cow Hopscotch ¹®Á¦ÀÔ´Ï´Ù.

Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a variant of the game for themselves to play. Being played by clumsy animals weighing nearly a ton, Cow Hopscotch almost always ends in disaster, but this has surprisingly not deterred the cows from attempting to play nearly every afternoon.

The game is played on an R by C grid (2 <= R <= 100, 2 <= C <= 100), where each square is labeled with an integer in the range 1..K (1 <= K <= R*C). Cows start in the top-left square and move to the bottom-right square by a sequence of jumps, where a jump is valid if and only if

1) You are jumping to a square labeled with a different integer than your current square,

2) The square that you are jumping to is at least one row below the current square that you are on, and

3) The square that you are jumping to is at least one column to the right of the current square that you are on.

Please help the cows compute the number of different possible sequences of valid jumps that will take them from the top-left square to the bottom-right square.

INPUT FORMAT: (file hopscotch.in)

The first line contains the integers R, C, and K. The next R lines will each contain C integers, each in the range 1..K.

OUTPUT FORMAT: (file hopscotch.out)

Output the number of different ways one can jump from the top-left square to the bottom-right square, mod 1000000007.

SAMPLE INPUT:

4 4 4
1 1 1 1
1 3 2 1
1 2 4 1
1 1 1 1

SAMPLE OUTPUT:

5

ÇÁ·Î±×·¥À» ´ÙÀ½°ú °°ÀÌ ÀÛ¼ºÇߴµ¥

#include <stdio.h>
#define MOD 1000000007
int r,c,k;
long long int a[101][101];
long long int d[101][101];
int mod(int x){
    return (x+MOD)%MOD;
}
int main(){
    scanf("%d%d%d",&r,&c,&k);
    int i,j,l,m;
    for(i=0;i<r;i++)
        for(j=0;j<c;j++)
            fscanf(inf,"%lld",&a[i][j]);
    d[0][0] = 1;
    for(i=0;i<r;i++){
        for(j=0;j<c;j++){
            for(l=i+1;l<r;l++){
                for(m=j+1;m<c;m++){
                    if(a[i][j]!=a[l][m]) d[l][m] = mod(d[i][j]+d[l][m]);
                }
            }
        }
    }
    printf("%lld",d[r-1][c-1]);
    return 0;
}

4°³ test case¸¸ Á¤´äÀÌ Ãâ·ÂµÇ°í, ´Ù¸¥ test caseµéÀº Á¤´äÀÌ Ãâ·ÂµÇÁö ¾Ê½À´Ï´Ù.
Ç®ÀÌ¿¡¼­µµ À§¿Í À¯»çÇÏ°Ô ÄÚµùÀÌ µÇ¾î Àִµ¥, ¹«¾ùÀÌ ¹®Á¦ÀÎÁö Àß ¸ð¸£°Ú½À´Ï´Ù.

Ç®ÀÌ

The grid is big enough that it is not possible for us to merely try all possible paths.

We simply care about how many ways there are to get to a given square though. Let f(x,y)  be the number of ways there are to get to row x  and column y  . Note that f(x,y)  is simply the sum of all f(i,j)  where i<x  , j<y  , and the numbers in those squares don't match. This gives us an O(R 2 C 2 )  algorithm, which is fast enough for our purposes.


°¨»çÇÕ´Ï´Ù.



ÄĽºÄð 15-08-12 18:43
 
À̰÷¿¡¼­ ´äº¯µå¸± ³»¿ëÀº ¾Æ´Ñ°Å °°Áö¸¸ °£´ÜÇÏ°Ô »ìÆìº¸¸é int mod(int x) ÀÌ ÇÔ¼ö¿¡ ¹®Á¦°¡ Àִ°ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±¸ÇØ¾ß ÇÏ´Â ´ë»óÀº ¸ðµÎ long long int ÇüÀε¥ ÀÌ ÇÔ¼ö¿¡¼­´Â int·Î ¹Þ¾Æ¼­ int·Î return Çϴ±º¿ä.
°è»êÇÏ´Â °úÁ¤¿¡¼­ Á¤¼öÀÇ ¹üÀ§¸¦ ³Ñ¾î°¥ ¼ö Àֱ⠶§¹®¿¡ Å« µ¥ÀÌÅÍ¿¡¼­´Â Á¤È®ÇÑ °ªÀÌ ³ª¿ÀÁö ¾ÊÀ» ¼ö ÀÖÀ»°Å °°½À´Ï´Ù.
 
 

Total 667
¹øÈ£ Á¦   ¸ñ ±Û¾´ÀÌ ³¯Â¥ Á¶È¸
407 ¿¬»êÀÚ ÀÚ°¡Áø´Ü 6 (1) ±èÁØ¿µ 02-01 4470
406 2015 ½Ãµµ¿¹¼± Áß°íµîºÎ ¹®Á¦ 32¹ø ±âÈ£ ¾Ë·ÁÁÖ¼¼¿ä^^ (2) ÃÖ¼º¹Î 01-31 4474
405 ½Ç·ÂŰ¿ì±â ¼ýÀڻ簢Çü3 (1) °øÅÂÇö 01-29 4138
404 ÀÚÁöÁÖµµc¾ð¾î ¹Ýº¹Á¦¾î¹® ÀÚ°¡Áø´Ü 5Áú¹®¿ä (1) ¼Û¹ÌÁ¤ 01-28 4052
403 c¾ð¾î ÇÔ¼ö 2 ÀÚ±âÁø´Ü 7¹øÀÌ¿ä. (1) ±è¾ç´ö 01-27 4003
402 ÇÔ¼ö 1 ÀÚ±âÁø´Ü3¹øÀÌ¿ä (1) ±è¾ç´ö 01-26 3820
401 ÀÚ±âÁÖµµ c¾ð¾î ÇÁ·Î±×·¡¹Ö ¼±ÅÃÁ¦¾î¹® 91ÂÊ ÀÚ±âÁø´Ü 2¹øÀÌ¿ä (1) ±è¾ç´ö 01-11 3956
400 ÆÄÀÏÀÔÃâ·Â ÀÚ°¡Áø´Ü 5 (1) °øÅÂÇö 01-11 7743
399 ÆÄÀÏÀÔÃâ·Â ÀÚ°¡Áø´Ü 3 (1) °øÅÂÇö 01-11 5348
398 ÄÚµåºí·Ï Áý¿¡¼­ ±ò°í main cppµé¾î°¡´Âµ¥ ±× ÆÄÀÏÀÌ Á¸ÀçÇÏÁö¾Ê¡¦ (1) À̽¿ì 01-11 9912
397 °­Á °áÀç ¹æ¹ý ¹®ÀÇ µå¸³´Ï´Ù. (1) ±è¾ç¼ö 01-09 3817
396 Æ÷ÀÎÅÍ ÀÚ°¡Áø´Ü 6 (1) °øÅÂÇö 01-08 4613
395 ±¸Á¶Ã¼ Çü¼ºÆò°¡ 3 (1) °øÅÂÇö 01-08 5945
394 2015³â ½Ãµµ ¿¹¼±ÀÇ 25¹ø ¹®Á¦ Áú¹®ÀÔ´Ï´Ù. (1) ±è¹Ì¿µ 01-08 3789
393 ÀÚ±âÁÖµµ C¾ð¾î ¹è¿­1 ÀÚ°¡Áø´Ü7¹ø (1) ±èÅ¿í 01-07 7398
392 ±¸Á¶Ã¼ ÀÚ°¡Áø´Ü1 (1) °øÅÂÇö 01-05 5362
391 ¼ö°­·á ÀÔ±ÝÇß½À´Ï´Ù (1) Á¤¼ºÈÆ 01-05 3805
390 ¹®ÀÚ¿­ 2 ÀÚ°¡Áø´Ü 7 (1) °øÅÂÇö 01-04 4349
389 ¹®ÀÚ¿­ Çü¼º Æò°¡6 (1) °øÅÂÇö 01-04 4910
388 ¹®ÀÚ¿­ ÀÚ°¡Áø´Ü 6 (1) °øÅÂÇö 01-03 3690
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30    

ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸Ã³¸®¹æÄ§ | ÀÌ¿ë¾à°ü | ã¾Æ¿À½Ã´Â ±æ | À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý°ÅºÎ | »ç¾÷ÀÚÁ¤º¸È®ÀÎ
°æ±âµµ ¾È¾ç½Ã µ¿¾È±¸ È£°èµ¿ 1065-10 Çù¼º°ñµåÇÁ¶óÀÚ 601È£ ÇÑÄÄ¿¡µàÄÉÀ̼Ç(ÁÖ) TEL : 031-388-8840 FAX : 031-388-0996
´ëÇ¥ÀÚ : ±èµ¿±Ô »ç¾÷ÀÚ¹øÈ£ : 130-86-02870 Åë½ÅÆÇ¸Å¾÷½Å°í¹øÈ£ : Á¦ 2010-°æ±â¾È¾ç-888È£
COPYTIGHT(C) ÇÑÄÄ¿¡µàÄÉÀ̼Ç(ÁÖ), ALL RIGHT RESERVED.
´ãÀº°­Á : 0